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Abstract

This paper describes three case studies in the lightweight application of formal methods to requirements modeling for

spacecraft fault protection systems. The case studies differ from previously reported applications of formal methods

in that formal methods were applied very early in the requirements engineering process, to validate the evolving

requirements. The results were fed back into the projects, to improve the informal specifications. For each case

study, we describe what methods were applied, how they were applied, how much effort was involved, and what the

findings were. In all three cases, formal methods enhanced the existing verification and validation processes, by

testing key properties of the evolving requirements, and helping to identify weaknesses. We conclude that the

benefits gained from early modeling of unstable requirements more than outweigh the effort needed to maintain

multiple representations.
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I. Introduction

In the development of embedded, mission-critical software there is a serious, unmet need for early feedback on the

viability of a system in the requirements and early design stages [1]. The impact of early feedback on cost and safety

has been demonstrated empirically. Boehm showed that errors are cheaper to fix the earlier they are detected in the

development lifecycle [2]. In a study of 387 software errors found during integration and system testing, Lutz found

that safety-related software errors arose most often from inadequate or misunderstood requirements. [3]. It is also

clear that conventional techniques fail to catch many requirements errors [4]. However, studies have suggested that

formal methods have tremendous potential for improving the clarity and precision of requirements specifications, and

in finding important and subtle errors [5-7].

This paper presents three case studies of successful application of formal methods for requirements modeling. The

studies demonstrate that a pragmatic, lightweight application of formal methods can offer a cost-effective way of

improving the quality of software specifications. The studies concern the Verification and Validation (V&V) of fault

protection software on the International Space Station and the Cassini deep space mission. The three studies share a

number of features:

* Formal methods were applied in response to an existing development problem. In each case the problem was to

provide an assurance that the fault protection requirements were correct. The informal techniques used on these

projects had not been able to provide the desired level of assurance. Whilst the formal methods did not assure

correctness, they improved the level of assurance by revealing errors that the informal techniques had missed.

• Formal methods were applied selectively. Only the most critical portions of the requirements were modeled, and

only a selection of properties of these requirements were analyzed. The formal methods were applied by a

research team working in parallel with the requirements analysts, rather than by the analysts themselves.

• In each case, formal methods offered a partial solution to the original problem. In particular, they provided a

consistent requirements model, and revealed a number of errors, some of which had not been detected using

inspection and traceability analysis. The studies increased the confidence in the requirements, but did not

guarantee the completeness and correctness of the specifications. We argue that this is appropriate for early
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modelingofrequirements.

• Ineachcase,theresultsofthestudyfedbackintodevelopmentprocesstoimprovetheproduct.

Wesummarizeobservationsontheutilityofformalmethodsinthesestudies,anddescribeproblemsweencountered

inapplyingthem.Finally,wedescribeourcurrentworkexploringapplicationsofformalmethodsinevolutionary

designofnewarchitecturesforautonomousspacecraftcontrolsystems,andthespecialchallengesofformally

modelingevolutionarydesigns.

II. Background

1 Fault Protection

For NASA spacecraft, the term fault protection is used to describe system elements that detect and respond to

perceived spacecraft faults. There are two main requirements when a fault occurs: the system needs to guarantee the

completion of any time critical activities, and that the spacecraft is still safe, observable and commandable. Each

spacecraft function has a pre-defined set of operating parameters, where each parameter has a normal operating

range. Values beyond this range are out-of-tolerance. An out-of-tolerance condition may have many possible causes,

so information from multiple sources must be combined to locate the fault. The normal operating range for each

parameter is derived from the results of various system analyses, including failure modes and effects analysis

(FMEA), hazard analysis, and safety analysis. These analyses also provide rules of inference for fault recovery.

Fault protection software initiates appropriate responses when out-of-tolerance conditions are detected in hardware

and software components. Responses to loss of function include recovery (e.g. switch to a redundant backup), or

retry (e.g. re-start a device in an attempt to restore functionality where no backup is available). Hazardous conditions

generally require a sating response, to isolate the problem and minimize damage. For unmanned spacecraft, a typical

sating response is to shut down all non-critical functions, ensure the antenna is pointing towards Earth, and await

further commands. On Cassini, there is a requirement to be able to maintain such a safe state for up to two weeks.

For manned spacecraft there is a possibility of crew intervention, so a further requirement is to isolate the fault to the

smallest possible replaceable unit.

Because of the need to maintain a safe, habitable environment for the crew, fault protection on the space station has

additional requirements over those for unmanned craft, and is referred to as Fault Detection, Isolation and Recovery

(FDIR). Responsibility for FDIR is divided up into five layers, or domains. The lowest domain is the individual

device. The next layer is the function that uses the device, followed by the subsystem and system control layers. The

highest layer is manual FDIR. If a domain cannot provide FDIR for some conditions, a higher layer must provide it.

For example, the subsystem layer, rather than the device layer, might handle an error condition involving the
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interactionoftwoseparatedevices.Validationof the space station FDIR is particularly problematic, as FDIR

functionality is distributed across many flight computers. The development and construction schedule for the space

station does not permit full integration testing of the entire architecture prior to on-orbit assembly. Hence, FDIR

functionality must be validated through a combination of inspection, simulation and analysis.

Fault protection operates asynchronously, and may be invoked at any time. Hence, the addition of fault protection

software to a spacecraft system significantly increases the complexity of the software. An error in the fault protection

software may compound an existing failure. This occurred during the launch of Ariane 5, when the fault protection

software erroneously shut down two healthy processors, in response to an unhandled floating point overflow

exception in a non-critical software function [8]. If the spacecraft is executing a critical function (e.g. an orbital

maneuver) when the failure occurs, the fault protection must respond quickly to allow the critical function to

proceed.

2 The Need for Formal Methods

Current requirements engineering processes within NASA rely extensively on informal processes, largely based on

inspection. Inspection helps to remove a large number of specification errors, but cannot provide the desired level of

assurance for the new generation of software-intensive spacecraft [4]. Remaining errors are detected throughout the

lifecycle as the developers attempt to implement and test the system. There is a significant lack of effective methods

and tool support for the requirements phase in comparison to those available for detailed design and coding.

The lack of rigorous requirements engineering techniques is well illustrated in the fault protection area. Fault

protection requirements are more volatile than most other requirements, as they are sensitive to any change during

the development of the primary system. Interactions between requirements can be hard to identify, let alone validate.

Formal methods can help provide this validation in a number of ways. The process of formalizing a specification

provides a simple validation check, as it forces a level of explicitness far beyond that needed for informal

representations. Once a formal specification is available, it can be formally challenged [9], by defining properties

that should hold, and proving that they do indeed hold. Formal challenges may be achieved both through theorem

proving, and through state exploration or 'model checking'.

Rushby [9] points out that there is considerable scope for selective application of formal methods. Formal methods

can be applied just to selected components of a system, and can be used just to check selected properties of that

system. Most importantly, a great deal of benefit can be derived from formal methods without committing a project

to the use of formal notations for baseline specifications. In the studies described in this paper, we used formal

modeling to find errors in critical parts of existing informal specifications, but did not replace the informal

specifications with their formal counterparts. We use the term 'lightweight' to indicate that the methods can be used
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to perform partial analysis on partial specifications, without a commitment to developing and baselining complete,

consistent formal specifications. This approach is also consistent with the advocacy of multiple representations as a

way of overcoming analysis bias [10].

3 Methodology

The authors are (or were) members of a multi-center team within NASA, funded primarily by the NASA Office of

Safety and Mission Assurance, to explore the potential of formal methods for increasing safety and reducing cost of

mission-critical software [11, 12]. The team combines personnel with experience in formal methods, in the domains

where formal methods are being applied, in software assurance and V&V, and in technology transfer. We have

explored formal methods on a number of NASA programs, including Space Shuttle [6], Space Station [13, 14], and

Cassini [ 15]. Throughout these studies, the emphasis has been on pragmatic application of formal methods in areas

where there appears to be the greatest need. Experiences gained from these studies have been used to develop two

NASA guidebooks [16, 17].

Although some development of the methods themselves has been necessary in order to fit them to our purpose, this

has not been the main focus of the studies. Rather, we have concentrated on addressing issues such as:

• Can formal methods provide a cost-effective addition to existing techniques to improve the quality of

requirements specifications?

• Can formal methods increase confidence in the validity of the requirements?

• Can early application of formal methods be beneficial even while requirements are volatile?

• How much effort is needed to apply formal methods, and what is the most appropriate process for applying

them?

• Within any particular formal methods process, which activities require more effort, and which activities yield

the greatest benefits?

• Which formal methods and tools are useful for which tasks?

In this paper we describe three studies that were implemented in the early requirements phase for new systems.

These studies were responses to real needs on the projects. The requirements were often still volatile, and hence

some effort was needed to ensure the formal analysis was kept up to date. Our goal was to demonstrate that formal

methods could be applied and could add value in this context.

Although the three studies described here used different tools and notations, the basic approach was the same:

1) Re-state the requirements in a clear, precise and unambiguous format.

2) Identify & correct internal inconsistencies.
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3) Testtherequirementsbyprovingstatementsaboutexpectedbehavior.

4) Discusstheresultswiththerequirements'authors.

Theformalmethodsusedinthestudieswerechosenaccordingtoneed.PVS[18]waschosenfortwoofthestudies,

becauseit offersautomatedsupportforproofconstruction,andbecausethespecificationlanguageappearedtobe

readilyunderstandabletoengineersandprogrammers.SCR[19]waschosenfortheremainingstudyasit offereda

tabularnotationthatcorrespondedwelltothestructureoftherequirements,andprovidedtoolsupportforconsistency

checking.In eachstudy,anintermediatenotationwasusedasapreludetotranslatingtherequirementsintothe

formalspecificationlanguage.Thefirststudyusedanannotatedflowchartnotation,thesecondusedAND/ORtables

[20],whilstthethirdusedOMT(ObjectModelingTechnique)diagrams[21].Theintermediatenotationshelpedto

clarifyambiguities,andgainabetterunderstandingofthestructureoftherequirements.Thisinturnhelpedto

determinehowtheformalnotationwouldbeused.

Study 1: High level FDIR requirements for Space Station

2

This study was commissioned by the space station independent assessment panel, who were seeking some assurance

that the high level FDIR concept was clearly defined and validated, before detailed requirements were derived from

it. Subsequent changes to the FDIR concept would have significant impacts throughout the requirements and design

of the entire system. The study analyzed 18 pages of FDIR requirements, and was conducted over a period of two

months, by two people working part-time. The total effort was approximately 2 person-months.

1 Approach

Three views of the FDIR had been documented: the functional concept diagram (FCD) which is a flowchart-like

representation of the generic FDIR algorithm; baseline FDIR requirements; and capabilities, in which the

requirements are grouped into related functional areas. This study concentrated on the first two of these views,

developing a formal model of each, and testing traceability between them.

The four-step approach described above was used as follows:

1) The FCD was restated by abstracting out common features. The 53 processing steps of the original FCD were

partitioned, in order to reduce the detail. For example, the first 12 steps check parameters for out-of-tolerance

conditions, the next 7 deal with sating, the next 8 check for functional failure, and so on. Each step was labeled

as one of three procedural categories: performing automated procedures, checking for anomalous conditions, and

2

Independent assessment is an oversight activity, covering all aspects of the system, including hardware, software and operational
procedures.
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message: type =

{ parameter_OK,

parameter_verified,

safing_not_allowed,

safing_executed,

% parameter is ok when its tolerance

% check has just ran and the parameter

% is OK (i.e. within tolerance)

rr_parameter_ok: axiom

forall (t: tolerance_check):

( on(just_ran(t, time) and

OK?(t(time)))
iff

record_check(time)(parameter_OK, t)

)

Figurel:Fmgments_PVSs_cification, showlng_pedefinitionsand _iomsusedtoexpmssFDlRconcepts

2)

3)

recording/reporting results. Finally, six classes of condition under which control is passed to higher level FDIR

domains were identified. The result of this initial analysis was a more structured (informal) model of the FDIR

processes. This model was informally checked for reasonableness and for traceability to the original FCD. All

the objects and attributes referenced in the FCD were then translated to PVS. Figure 1 shows two fragments of

PVS generated at this stage.

The baseline requirements were then translated directly into PVS, using the definitions and types from the

formalized FCD. This translation concentrated only on the FDIR system itself; we did not model the primary

system that the FDIR monitors. Translation of these requirements into PVS proved to be relatively

straightforward. Figure 2 gives an example.

The resulting definitions were typechecked using the PVS tool. Typechecking helped to eliminate several types

of errors in the specification, including typos, syntax errors and type consistency errors.

The PVS specification was validated by using the PVS proof assistant to prove claims based on the specification.

An example of such a claim is "at any domain level, if a failure occurs then it will always be recovered at some

domain level". Although this claim was not very profound, several missing assumptions were detected in the

Requirement: automatic hazard and hazardous condition detection: ISSA shall automatically detect any out-of-

tolerance condition or functional performance parameter that exhibits a time to catastrophic or critical effect of less

than 24 hours.

automatic_hazard_condition_detection: axiom

forall (p:parameter)

param_out_of_tol?(p) AND time_to_effect(p)<24 =>

exists(d:fdir_domain): detection(p,d) = automatic

Figure2:AnexampleFDIRrequirement,andits PVStranslation
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process of proving it. For example, several sequencing constraints needed to be defined explicitly, even though

the FDIR documentation states that no such constraints should be inferred from the requirements. A total of 14

claims were defined and proved.

4) A total of fifteen issues were documented and discussed with the requirements' authors. We had planned to

explore traceability between the FDIR concept diagram and the baseline requirements. However, an initial

analysis indicated that there was little traceability. The requirements' authors confirmed that the two documents

expressed different kinds of requirements. The FCD describes the processing that is performed within an FDIR

domain, while the baseline requirements describe a higher level view of the kinds of FDIR that must be

provided.

2 Findings

In general, the FDIR requirements were well thought out. However, there was some question over whether the

documentation was sufficient so that system developers and other stakeholders would understand them. Most of the

fifteen issues were minor ambiguities, inconsistent use of terms, and missing assumptions, discovered during the

process of formalization. These reduce the ability of developers to understand the requirements. For example, the

distinction between the primary system and the FDIR system was not clear in the original requirements. Other

ambiguities surrounded the use of terms such as "anomaly", "out-of-tolerance" and "functional failure". Three of the

issues were classed as "high-major":

a) There were inconsistencies in the FCD over reporting the status of sating, recovery and retry procedures. The

intention was that the FDIR processes should report their status before, during and after execution of each

procedure. However, some of the procedures were missing requirements for some of the reporting activities, so

that most of them did not have requirements to report status at all three points. This problem was detected during

the initial reformulation of the FCD diagram.

b) The proper sequencing of FDIR processing is not clear from the FCD. Although the FCD looks like a flowchart,

the accompanying text stipulates that it should not be interpreted as a sequential process. However, some

important requirements can only be inferred by treating the flowchart as a sequential process. For example, it is

not clear whether sating should be performed before isolation, although the diagram seems to imply it should be.

This problem was detected during the proof process: some of the sequencing requirements had to be stated

explicitly in order to prove necessary properties of the FDIR model.

c) No requirements are given for checking inconsistencies between parameters. The requirements only mention

limit checking of individual parameters. The requirements team clearly intended that inconsistency checking

should be included. This problem was discovered during the process of formalizing the baseline requirements.
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(2.16.3.f) While acting as the bus controller, the C&C MDM CSCI shall set the
e,c,w, indicator identified in Table 3.2.16-II for the corresponding RT to
"failed" and set the failure status to "failed" for all RT's on the bus upon
detection of transaction errors of selected messages to RTs whose 1553 FDIR is
not inhibited in two consecutive processing frames within i00 millisec of
detection of the second transaction error if; a backup BC is available, the BC
has been switched in the last 20 sec, the SPD card reset capability is
inhibited, or the SPD card has been reset in the last i0 major (10-second)
frames, and either:

i. the transaction errors are from multiple RT's, the current channel has been
reset within the last major frame, or

2. the transaction errors are from multiple RT's, the bus channel's reset
capability is inhibited, and the current channel has not been reset within the
last major frame.

Figure3:An exampleof a level3 r_ulrement for BusFDIR.This r_uirement specmestheclrcums_nces underwhichall remote
terminals(RTs)on the busshould_ switch_ totheirbackups.

Study 2: Detailed Bus FDIR requirements for Space Station

The purpose of this study was to analyze the detailed FDIR requirements associated with the bus controller for the

main communications bus on the space station. These requirements represent a concrete implementation of the high

level FDIR concepts addressed in the first study. The study was initiated by an Independent Verification and

Validation (IV&V) 3 team. The IV&V team was having difficulty validating the bus FDIR requirements, as some of

the properties that the IV&V team wished to test could not be established using existing informal methods.

The requirements for Bus FDIR are expressed in natural language, with a supporting flowchart showing the

processing steps involved. The flowchart does not have the status of a requirement, but was merely provided for

guidance; the intention was that the prose completely expressed the requirements (E.g. figure 3). The IV&V team

had recommended that to improve clarity, the requirements should be re-written in a tabular form (E.g. table 1). This

recommendation had been rejected because of the cost involved in re-writing them all. Hence, the IV&V team

generated their own tabular versions, in order to facilitate the kinds of analysis they wished to perform.

The study analyzed 15 pages of level 3 requirements, and was conducted over a period of four months, by one person

working part time. The total effort was approximately 1.5 person months.

1 Approach

The four-step approach was used as follows:

1) Each individual requirement was restated as an AND/OR table, to clarify the logic (see table 1). The generation

of a tabular interpretation of each individual requirement proved to be hard, as there are a number of ambiguities

3

IV&V is a practice in which a separate contractor is hired to analyze the products and process of the software development
contractor [22]. The IV&V team reports to the Independent Assessment panel.
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Table1:The tabularversionof the requirementshowninfigure3, showingthefour conditions(the four columns)under
which the actionshouldbe carriedout. A dot Indicates "don't care".

concerning the associativity of 'and' and 'or' in English, and the correct binding of subclauses of long sentences.

For example, in figure 3, it is not clear what the phrase "in two consecutive processing frames" refers to. When

the requirement shown in figure 3 was given to four different people to translate, we obtained four semantically

different tables. By comparing these different interpretations, an extensive list of ambiguities was compiled. The

ambiguities were resolved through detailed reading of the documentation, and questioning the original authors.

This process also revealed some inconsistencies in the way in which terminology was used. The individual tables

were then combined into a single SCR state-machine model (see table 2).

2) The SCR model was type-checked using the SCR toolset.

3) Properties of the SCR model were tested in two ways. Static properties of the state model, such as disjointness

and coverage, were tested using the built-in checker in the SCR tool. Example properties are "for each

combination of failure conditions, there is an FDIR response specified" and "for each combination of failure

conditions there is at most one FDIR response specified". Dynamic properties of the model were tested by

translating the SCR state machine model into PROMELA [23], and applying the SPIN model checker to explore

its behavior. For example, some of the requirements express conditions to test whether various recovery actions

have already been tried. These conditions were validated by exploring the dynamic behavior of the model in the

face of multiple failures, and recurring failures. An example property is "if an error persists after all recovery

actions have been tried, the bus FDIR will eventually report failure of itself to a higher level FDIR domain".

4) The findings were discussed with the IV&V team, and fed back to the development team through the normal

IV&V reporting process.
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2 Findings

In addition to a number of minor problems with inconsistent use of terminology, the following major problems were

reported:

a) There were significant ambiguities in the prose requirements, as a result of the complex sentence structure.

Some of these ambiguities could be resolved by studying the higher level FDIR requirements, and the

specifications for the bus architecture. Some of the ambiguities that arose from the sentence structure could not

be resolved in this way, and could lead to mistakes in the design. These ambiguities were detected in the initial

reformulation of the requirements as AND/OR tables.

b) There was one missing requirement to test the value of the Bus Switch Inhibit Flag before attempting to switch

to the backup bus. This was detected during the test for disjointness in the SCR specification.

The requirements were missing a number of preconditions that enforce the ordering of the inference rules. The

accompanying flowchart for these requirements implied a sequence for these rules. An attempt had been made in

the prose requirements to express this sequence as a set of preconditions for each rule, to ensure that all the

earlier rules have been tested and have failed. The preconditions did not completely capture the precedences

implied by flowchart. This problem was found during the test for disjointness in the SCR specification.

d) The timing constraints expressed in the requirements were incorrect. Several of the failure isolation tests

referred to testing whether certain FDIR actions had already been tried "in the previous processing frame".

c)

Current Conditions Next

Mode errors bus bus bus backup BC card card errors channel channel Mode
in two swch'd switch swch'd BC swch'd reset reset from reset reset

cons. last inhibit this avail, in last inhibit last 10 mult. last inhibit

frames frame frame 20 sec frames RTs frame

Normal @T F - - switch

buses

@T T F - - F reset the

@T T F - - F channel

@T - - F F T T resetthe

@T F F T F T card

@T T - F T switch RT

@T F T - F T to backup
@T T - F F T

@T F T - - F F T

@T T F T T T switch BC

@T T F T T F T tobackup

@T T F - T T T

@T T F T T F T

@T T T T T T switch

@T T T T T F T allRTs

@T T T T T T

@T T T T T F T

Table2: An SCRModetransitiontable.Eachofthe centralcolumnsrepresentsa condition,showlngwhetherIt shouldbe trueor false; '-'
means"don't care"; '@T' Indicatesa triggerconditionfor themodetransition.Thefour columnsof table I correspondto the lastfour rows
of thlstable.The semanticsof SCRrequirethistableto representa function,so thatthedisjunctionof all therowscovers allpossible
conditions(coverage),and theconJunctlonof anytwo rowsIs false(dlsJolntness).
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FigureS:An exampleOMTstatediagramfor faultprotection

However, as each FDIR recovery action is followed by a time-out while the action takes effect, and as further

FDIR intervention is only initiated on occurrence of errors in two consecutive processing frames, these

conditions can never be true. This was discovered during model checking of the PROMELA model.

Study 3: Fault Protection on Cassini

The third study concerns the system level fault protection software for the Cassini deep space probe. System

reliability is a major concern for Cassini, due to the duration of its mission to Saturn. Fault protection is a major

factor in providing the required levels of reliability. The study examined the requirements for the software executive

that manages fault protection and requirements for putting the spacecraft into a safe state. The Cassini project was

interested in the potential of formal methods to provide an assurance that the fault protection requirements were

correct.

This study analyzed eighty-five pages of documented requirements. Fifteen pages of OMT diagrams [21] were

produced, followed by twenty-five pages of PVS specifications. Twenty-four lemmas were proven. The study was

conducted over the period of a year by two people working part-time, with a total effort of approximately twelve

person-months.

1 Approach

The four-step model was applied as follows:

1) The first step was the production of OMT diagrams representing the prose requirements (see figure 5). The

production of object diagrams, state diagrams and dataflow diagrams, according to the OMT method, helped to

define the boundaries and interfaces of the fault protection requirements, and helped to crystallize some of the

issues that arose in the initial close reading of the requirements. A PVS model was then produced directly from

the OMT models - the elements of the OMT model often mapped onto elements of the formal model in a

relatively straightforward way. For example, object classes mapped onto type definitions in PVS, while state
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Cassini Requirement: If Spacecraft Sating is requested via a CDS (Command and Data Subsystem) internal request

while the spacecraft is in a critical attitude, then no change is commanded to the AACS (Attitude and Articulation

Control Subsystem) attitude. Otherwise, the AACS is commanded to the homebase attitude.

saf: THEORY

% Example is excerpted from saf theory.
% Spacecraft safing commands the AACS to

% stopping delta-v's and desat's.
BEGIN

homebase mode, thereby

aacs_mode: TYPE = {homebase, detumble}
attitude: TYPE

cds_internal_request: VAR bool

critical_attitude: VAR bool

prev_aacs_mode: VAR aacs_mode

aacs_stop_fnc (critical_attitude, cds_internal_request, prev_aacs_mode):

aacs_mode =

IF critical_attitude

THEN IF cds_internal_request

THEN prev_aacs_mode
ELSE homebase

ENDIF

ELSE homebase

ENDIF

aacs_safing_req_met_l: LEMMA

(critical_attitude AND cds_internal_request)

OR (aacs stop_fnc (critical_attitude, cds_internal_request,

prev_aacs_mode) = homebase)

END saf

Figure 6: An example Casslni fault protection requirement, a fragment of PVS representing this requirement, and an associated
'requirements-met' lernma.

2)

3)

transitions mapped onto functions and axioms.

The PVS model was checked for internal consistency and traceability to the original requirements. Lemmas

were defined to ensure that the model accurately captured the documented requirements. Figure 6 shows an

example. The function expressed in this requirement is represented as part of the PVS theory for sating

procedures. The requirement is also defined declaratively as a lemma, as a consistency check. Seven such

lemmas were proved, and three disproved.

The PVS model was then checked for safety and liveness conditions. Safety lemmas represent conditions that

should not arise. For example, "A fault protection response shall not change the instrument's status during a

critical sequence of commands". Seven such lemmas were proved. Liveness lemmas ensure that required

functions will eventually be performed. An example is "If a response has the highest priority among the

candidates and does not finish in the current cycle, it will be active in the next cycle". Seven such lemmas were

proved.
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4) The results were discussed with Cassini project personnel. In some cases where requirements issues were still

being worked by the project, the formal methods effort was able to assist by formalizing undocumented concerns

(e.g., whether starvation of tasks would be possible) clearly and unambiguously. This facilitated rapid response

to proposed changes or alternatives by the Cassini Project.

2 Findings

A total of 37 issues were identified during the study. These were classified as follows:

11 undocumented assumptions: None resulted in errors, but some significant ones needed documentation, to prevent

future errors, especially at interfaces. These assumptions were identified during the process of formalizing the

requirements.

10 cases of inadequate requirements for off-nominal or boundary cases: Such cases usually involved unlikely

scenarios, and the spacecraft engineers had to help decide which were credible. An example case is when several

monitors with the same priority level detect faults in the same cycle. Documentation of such cases is useful, as it

helps to verify the robustness of the system.

9 traceability�inconsistency problems: The study uncovered a number of traceability problems between different

levels of requirements, and inconsistencies between requirements and subsystem designs. Many of the latter

were significant, as the correct functioning of the system depends on choosing the correct interpretation. For

example, in the high-level requirements, the assumption is made that if multiple faults are detected within the

response time of the first fault, they are all symptoms of the original fault. In the low-level requirements, a fault

response will be cancelled if a fault of higher priority is detected, in order to handle the higher-priority fault.

6 cases of imprecise terminology: These were largely documentation problems, including synonyms and related

terms. They were revealed during the process of defining the PVS model.

! logical error: This was a problem of starvation when a request for service is pre-empted by a higher priority

request. The issue was first spotted during initial close reading, and confirmed by disproving a lemma.

V. Discussion

The majority of published case studies of the use of formal methods are post hoc applications to on-going or finished

projects. Such studies demonstrate what formal methods can do, and help to refine the methods, but they do not help

to answer questions of how such methods can be integrated with existing practices on large projects. A few notable

exceptions have used formal methods 'live' during the development of real systems [20, 24-26]. However, in all

these cases, the emphasis was on the adoption of formal notations as baseline specifications, from which varying

degrees of formal verification of the resulting design and implementation are possible.
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Incontrast,weappliedformalmethodsonlyintheearlystagesofrequirementsengineering,duringwhichthe

requirementswerestillvolatile.Ratherthantreatingformalspecificationasanendproductoftherequirements

phase,weusedit toanswerquestionsandimprovethequalityoftheexistingspecifications.

OurapproachdoesnotfitwithanyofthethreeprocessmodelssuggestedbyKemmerer[26]aswaysofapplying

formalmethods.Kemmereroffersthreealternatives:after-the-fact, in which a formal specification is produced at the

end of the development process to assist with testing and certification; parallel, in which formal specifications are

developed alongside a conventional development process, and used to perform verification of code, design and

requirements; and integrated, in which formal specification is used in place of conventional approaches. Our studies

suggest a fourth model, in which formal modeling is used to increase quality during the requirements and high level

design phases, without necessarily producing a baseline formal specification, or verifying low level design and code.

Our studies also demonstrate that questions of tool support need not be a barrier to the adoption of formal methods.

We conducted sophisticated validation of our models, via theorem proving and model checking, using tools that are

essentially still research prototypes. In the 12 case studies surveyed by Gerhart eL al. [25], tool support was generally

only used for syntax checking of specifications, and Gerhart suggests tool impoverishment is a barrier to wider use of

formal methods. This may be true for the more complete process models used in case studies of the kinds described

by Kemmerer [26], Hall [24] and Gerhart [25], but is not true of the 'lightweight' application of the kind we adopted.

Although we have not attempted any detailed quantitative analysis of the costs and benefits of the application of

formal methods in these studies, in each case the study added value to the project by clarifying the requirements and

identifying important errors very early in the lifecycle. The costs, in terms of time and effort, were consistent with

existing V&V tasks on these projects. Formalization of the requirements was the most time consuming part of the

process, and in each case it revealed a large number of minor problems. Formalization also helps to focus attention

on areas that are more susceptible to errors [27]. Consistency checking of the models was inexpensive, as it is largely

done through automated typechecking. Formally challenging the models required a great deal of expertise, and it was

often difficult to find suitable properties to test. This step uncovered a smaller number of more subtle errors, of the

kind that are very hard to detect informally.

A number of observations arising from these studies are worth further discussion:

Who should apply the methods?

In each of the studies, the formal analysis was conducted by experts in formal methods, who were external to the

development project. There was a simple reason for this: it is easier to bring in a small team of formal methods

experts than it is to train members of the development team.
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Therearesomeinterestingconsequencesofour use of external experts. Developing formal models of informal

specifications involves a great deal of effort in understanding the domain, and figuring out how to interpret the

documentation. As our external experts were unfamiliar with the projects prior to the studies, they did not share the

assumptions that the requirements' authors had made. Our experts questioned everything, spurred on by the

explicitness needed to build the formal models. They also needed to present parts of their models back to the

developers, in order to check the accuracy of their interpretations. The result was a healthy dialogue between the

developers and our formal methods experts. This dialogue exposed many minor problems, especially unstated

assumptions and inconsistent use of terminology. This dialogue was clearly an important benefit.

Another aspect of this dialogue was that some of the issues that were raised were the result of misunderstandings by

our experts, rather than genuine errors. The requirements' authors therefore had to filter the issues, to pick out those

for which the benefits of changing the requirements out-weighed the cost. This was especially true when the analysis

revealed "interesting" off-nominal cases. A great deal of domain knowledge was needed to judge whether such cases

were reasonable. The need for such filtering would be greatly reduced if the analysis were conducted by domain

experts; however, the risk of analysis bias would then increase.

Is formal modeling of volatile requirements worthwhile?

During early stages of the requirements process, there may be a great deal of volatility. In each case study, some

effort was needed to keep the formal model up to date with evolving requirements. For example, in the second study

new drafts of the requirements document were being released approximately every two months. In at least one case

(study 2, finding c), the error had already been fixed by the time we discovered it. We mitigated the problem of

fluctuating requirements by only doing the minimum amount of modeling necessary to test the properties that were

of interest.

Our results indicate that there is no need to wait for the requirements to stabilize before applying formal methods.

Early formalization allowed us to crystallize some of the outstanding issues, and explore different options. Most

importantly, during this early phase the development team is more receptive to the issues raised from the formal

modeling. This again emphasizes the importance of lightweight formal methods: the formal model itself can be

discarded if the requirements change significantly, while the experience and lessons learned from it are retained.

Were Intermediate representations useful?

Like Hall [24], we found that the use of intermediate, structured representations facilitated the process of formalizing

the requirements. The type of intermediate representation varied across the studies: the first study used an annotated

version of the original FCD flowchart, the second study made use of AND/OR tables to clarify complex predicates,

while the final study made extensive use of OMT diagrams. A large part of the effort in the formalization process
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liesinunderstandingthe existing requirements. These intermediate representations helped to refine this

understanding, and therefore reduced the effort needed to generate and debug the formal models.

The intermediate representations also helped to create some initial structure for the formal models. Since the

elements of the intermediate representations often mapped directly onto elements of the formal specifications, the

subsequent effort of formalization was reduced. This also facilitated traceability between the formal and informal

specifications, making it simpler to keep the formal model current. For example, in the third study, the OMT

diagrams offered multiple perspectives on the requirements, and were easy for project personnel to review for

accuracy. In effect the OMT model provided a higher level structural view of the requirements, while the PVS

models filled in the processing details, and allowed detailed behavioral analysis.

From our experience, it seems that this benefit more than outweighs the extra cost of maintaining several

representations, at least for high levels of abstraction, even when requirements are still unstable.

VI. Conclusions

The three studies described here were conducted as pilot studies to demonstrate the utility of formal methods and to

help us understand how to promote their use across NASA. An important characteristic of these studies is that in

each case the formal modeling was carried out by a small team of experts who were not part of the development

team. Results from the formal modeling were fed back into the requirements analysis phase, but formal specification

languages were not adopted for baseline specifications.

We have shown that lightweight formal methods complemented existing development and assurance practices in

these projects. If formal methods is seen as an additional tool in the V&V toolbox, then selected application to

existing large projects becomes feasible.

As a follow-up to the studies described here, we have begun to investigate the role of formal methods in the

development of new spacecraft technology. As part of NASA's New Millennium program, new architectures are

being developed using knowledge-based systems to reduce the reliance of the spacecraft on ground support. Rather

than produce a detailed statement of requirements, the project is using a rapid prototyping approach to explore the

capabilities of the technology. The prototypes are tested against high level objectives, using a set of scenarios for

guidance. We are exploring how to use lightweight formal analysis on rapidly changing information, in such a way as

to provide useful and timely feedback. In particular, we are exploring the use of model checking to verify the fidelity

between a formal model and the prototype. The model checker tests whether the formal model behaves in the same

way as the prototype for a given scenario, while the formal model can be used to find interesting new scenarios on

which to exercise the prototype.
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